# On the Representation of Extremal Functions in the $L^{3}$-Norm 

Franz Peherstorfer*<br>Insitut fïr Mathematik, J. Kepler Universität Linz, A-4045 Lin-, Ausfria

Communicated by P. L. Butzer
Received March 13, 1978

## 1. Introduction

Bernstein (see [1, p. 249-254]) studied the following problem:
(a) Among all rational functions of the form

$$
\frac{x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i}}{p_{l}(x)}, \quad x \in[-1,+1], \quad\left(a_{0}, \ldots, a_{i n-1}\right) \in \mathbb{R}^{n}
$$

where $p_{l}$ is a real fixed polynomial of degree $l, n \geqslant l$, which is positive in the interval $[-1,+1]$, to find that one which has the least deviation from zero in the $L^{1}$-norm.

In this paper we consider the following problem, which can be regarded as a generalization of (a):
(b) Let $T_{n} \mid s_{l}$ be that function, which has the least deviation from zero in the $L^{1}$-norm among all functions of the form

$$
\frac{\sum_{i=n-k}^{n}\left(A_{i} \cos i \varphi+B_{i} \sin i \varphi\right)+\sum_{i=0}^{n-k-1}\left(a_{i} \cos i \varphi+b_{i} \sin i \varphi\right)}{s_{l}(\varphi)},
$$

where $\varphi \in[-\pi, \pi]$ and $A_{n}, \ldots, A_{n-k}, B_{n}, \ldots, B_{n-k} \in \mathbb{R}$ are given, $\left(a_{0}, \ldots\right.$, $\left.a_{n-k-1}, b_{0}, \ldots, b_{n-k-1}\right) \in \mathbb{R}^{2 n-2 k}$, and $s_{l}$ is a fixed trigonometric polynomial of degree $l, n \geqslant l+k+1$, with real coefficients, which is positive in the interval $[-\pi,+\pi)$. How can the extremal function $T_{n} / s_{l}$ be represented?

Problem (b) for $k=0$ in the Chebyshev norm was solved by Szegö [10].

[^0]
## 2. On the Problem of Szegö in the $L^{1}$-Norm

Definition 1 (see [10]). Let $s_{l}$ be a trigonometric polynomial of degree $l$ with real coefficients which is positive on $\left[-\pi,+\pi\right.$ ). Then $s_{l}$ can be represented in the form

$$
s_{l}(\varphi)=\gamma^{2}\left|g_{l}(z)\right|^{2}
$$

where $\gamma \in \mathbb{R}^{+}, g_{l}(z)=\prod_{\nu=1}^{l}\left(z-z_{\nu}\right), z_{\nu} \in\{z \in \mathbb{C}| | z \mid<1\}, z=e^{i \varphi}, \quad p \in$ $[-\pi,+\pi]$. We define for $A, B \in \mathbb{R}, A^{2}+B^{2}>0, n \in \mathbb{N}_{0}$,

$$
\gamma^{2} T_{n}\left(\varphi, s_{l}\right):=\operatorname{Re}\left\{(A-i B) z^{n-2 l} \xlongequal[g_{l}(z)]{g_{l}(z)}\right\} s_{l}(\varphi)
$$

for $z=e^{i \varphi}, \varphi \in[-\pi,+\pi]$.
If $n \geqslant l+1$, then $T_{n}\left(\varphi, s_{l}\right)$ is a trigonometric polynomial of degree $n$ with real coefficients and is of the form $A \cos n \varphi+B \sin n \varphi+\cdots$.

Notation. In the following let $\Psi_{n}(z)=z^{n-2 l}\left(g_{l}(z) / \overline{\left.g_{l}(z)\right)}\right.$ and $g_{l}^{*}(z)=$ $z^{l} \bar{g}_{l}\left(z^{-1}\right)=\prod_{v=1}^{l}\left(1-\bar{z}_{v} \bar{z}\right)$, the reciprocal polynomial of $g_{l}(z)$.

Definition 2. Let $a=x_{0}<x_{1}<\cdots<x_{r}=b, r \in \mathbb{N}$, be a decomposition of the interval $[a, b]$. We say that a function $v$ defined on $[a, b]$ is a sign function on $[a, b]$, if either $v$ or $-v$ takes the value $(-1)^{j}$ on the interval $\left(x_{j-1}, x_{j}\right), j=1, \ldots, r$.

It is easy to see that the following lemma is valid.

Lemma 1. If $v$ is a sign function on $[-\pi,+\pi]$, then, for $k \in \mathbb{N}_{0}$,

$$
\int_{-\pi}^{+\pi} e^{-i k \varphi} v(\varphi) d \varphi=\overline{\int_{-\pi}^{+\pi} e^{i k \varphi} v(\varphi) d \varphi}
$$

The following theorem now gives us the solution of the problem of Szegö in the $L^{1}$-norm. Concerning the methods used in the proof of Theorem 1 , we refer to [1, p. 252] and [3].

Theorem 1. Let $n \geqslant l+1$.
(a) $\int_{-\pi}^{+\pi} \frac{\left\{\begin{array}{l}\sin k \varphi \\ \cos k \varphi\end{array}\right\}}{s_{l}(\varphi)} \operatorname{sgn} T_{n}\left(\varphi, s_{l}\right) d \varphi=0, \quad k \in\{0, \ldots, n-1\}$.
(b) If $S_{n}(\varphi)=A \cos n \varphi+B \sin n \varphi+\sum_{i=0}^{n-1}\left(a_{i} \cos i \varphi+b_{i} \sin i \varphi\right)$, $S_{n} \neq T_{n}\left(\cdot, s_{l}\right)$ is a trigonometric polynomial, then

$$
\int_{-\pi}^{+\pi} \frac{\left|S_{n}(\varphi)\right|}{s_{l}(\varphi)} d \varphi>\int_{-\pi}^{+\pi} \frac{\left|T_{n}\left(\varphi, s_{l}\right)\right|}{s_{l}(\varphi)} d \varphi=\frac{4}{\gamma^{2}}\left(A^{2}+B^{2}\right)^{1 / 2}
$$

Proof. (a) Since $1=\overline{\Psi_{n}(z)} \Psi_{n}(z)=\left|\Psi_{n}(z)\right|^{n}$ for $z=e^{i \varphi}, \varphi \in[-\pi,+\pi]$, there exists a real function $\phi$ such that $e^{i \phi(\varphi)}=\Psi_{n}(z)\left(z=e^{i \varphi}, \varphi \in[-\pi,+\pi]\right)$. Therefore

$$
\begin{equation*}
\left.\gamma^{2} \frac{T_{n}\left(\varphi, s_{i}\right)}{s_{l}(\varphi)}=\operatorname{Re}^{\{ }(A-i B) e^{i \phi(\varphi)}\right\}=\left(A^{2}+B^{2}\right)^{1 / 2} \cos (\phi(\varphi)+x), \tag{1}
\end{equation*}
$$

where $e^{i=3}=(A+i B) /\left(A^{2}+B^{2}\right)^{1 / 2}$.
Considering the expansion

$$
\operatorname{sgn} \cos (\dot{\phi}+\alpha)=\frac{4}{\pi} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{2 r+1} \cos (2 r+1)(\phi+\alpha\}
$$

where ( $\left.z=e^{i \tau}, \varphi \in[-\pi,+\pi]\right)$

$$
\begin{equation*}
\cos (2 r+1)(\phi(\varphi)+\alpha)=\operatorname{Re}\left\{\left[e^{i \alpha} \Psi_{n}(\bar{z})\right]^{2 r-1}\right\}, \tag{2}
\end{equation*}
$$

we have

$$
\int_{-\pi}^{-\pi} \frac{e^{-i k \varphi}}{s_{l}(\varphi)} \operatorname{sgn} \cos (\phi(\varphi)+\alpha) d \varphi=\frac{4}{\pi \gamma^{2}} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{2 r+1} I_{r, k},
$$

with $\left(z=e^{i \sigma}\right) I_{r, k}=\int_{-\pi}^{+\pi}\left(z^{-k} / g_{l}(z) \overline{g_{l}(z)}\right) \operatorname{Re}\left\{\left[e^{i \alpha} \Psi_{n}(z)\right]^{2 r+1}\right\} d \varphi$.
An elementary calculation gives

$$
\begin{aligned}
i_{r . k}= & \frac{1}{2} \int_{-\pi}^{+\pi} \frac{z^{-k}}{g_{l}(z)}\left[e^{i \alpha} \Psi_{n}(z)\right]^{g_{l}(z)} d \varphi \\
& +\frac{1}{2} \int_{-\pi}^{+\pi} \frac{z^{k}}{g_{l}(\bar{z}) g_{l}(\bar{z})}\left[e^{-i \alpha} \overline{\Psi_{n}(\bar{z})}\right]^{2 r+1} d \varphi \\
= & \frac{e^{i(12 r+1) \alpha}}{2} \int_{|z|=1} z^{-k+l+(n-i)(2 r+1)} \frac{\left[g_{l}(z)\right]^{2 r}}{\left[g_{l}^{*}(z)\right]^{2 r+2}} \frac{d z}{i z} \\
& +\frac{e^{-i(2 r+1) \alpha}}{2} \int_{|z|=1} z^{k+l+(n-l)(2 r+1)} \frac{\left[\bar{g}_{l}(z)\right]^{2 r}}{\left[\bar{g}_{l}^{*}(\bar{z})\right]^{2 r+2}} \frac{d z}{i z}
\end{aligned}
$$

Since $\mid z_{v}:<1$ for $v=1, \ldots, l$ and $-k-1+l+(n-l)(2 r+1) \geqslant 0$ for $k \in\{0, \ldots, n-1\}, r \in \mathbb{N}_{0}$, both integrands are analytic in the unit disk. By Cauchy's theorem,

$$
I_{r, k}=0 \quad \text { for } \quad k \in\{0, \ldots, n-1\}, r \in \mathbb{N}_{0}
$$

Part (a) of Theorem 1 follows now from Lemma 1.
Concerning (b), it follows from (a) and Lemma 4.4 of $[8$, p. 103$]$ that
$T_{n}\left(\varphi, s_{l}\right) / s_{l}(\varphi)$ is the unique extremal function. From the proof of (a) we obtain with the aid of (1)

$$
\begin{equation*}
\int_{-\pi}^{+\pi}\left|\frac{T_{n}\left(\varphi, s_{l}\right)}{s_{l}(\varphi)}\right| d \varphi=\frac{\left(A^{2}+B^{2}\right)^{1 / 2}}{\gamma^{2}} \int_{-\pi}^{+\pi}|\cos (\phi(\varphi)+\alpha)| d \varphi \tag{3}
\end{equation*}
$$

Using the formula

$$
|\cos (\phi(\phi)+\alpha)|=\frac{2}{\pi}-\frac{4}{\pi} \sum_{r=1}^{\infty} \frac{(-1)^{r}}{4 r^{2}-1} \cos 2 r(\phi(\varphi)+\alpha)
$$

and, as is easy to see by (2),

$$
\int_{-\pi}^{+\pi} \cos 2 r(\phi(\varphi)+\alpha) d \varphi=0 \quad \text { for } \quad r \in \mathbb{N}
$$

we have

$$
\int_{-\pi}^{+\pi}|\cos (\phi(\varphi)+\alpha)| d \varphi=\frac{2}{\pi} \int_{-\pi}^{+\pi} d \varphi=4
$$

The result now follows from (3).

## 3. Representation of the Extremal Function of Problem (b)

Definition 3. Assume $n, l, m \in \mathbb{N}_{0}$, and let

$$
\prod_{\nu=1}^{m}\left(z-d_{\nu}\right)^{2}=\sum_{\mu=0}^{2 m} a_{\mu} z^{\mu}+i \sum_{\mu=0}^{2 m-1} b_{\mu} z^{\mu}
$$

where $d_{v} \in\{z \in \mathbb{C}| | z \mid<1\}, a_{\mu}, b_{\mu} \in \mathbb{R}$. Let $\prod_{\nu=1}^{m}\left(z-d_{\nu}\right)^{2}=1$ for $m=0$. We define for $n \geqslant l+m+1$

$$
\mathscr{T}_{n, s_{l}}\left(\varphi, \cdot \prod_{\nu=1}^{m}\left(z-d_{\nu}\right)\right):=\sum_{\mu=0}^{2 m} a_{\mu} T_{n-2 m+\mu}\left(\varphi, s_{l}\right)+\sum_{\mu=0}^{2 m-1} b_{\mu} T_{n-2 m+\mu}^{\prime}\left(\varphi, s_{l}\right)
$$

where

$$
\gamma^{2} T_{n}^{\prime}\left(\varphi, s_{l}\right):=\operatorname{Re}\left\{(B+i A) z^{n-2 l}=\frac{g_{l}(z)}{g_{l}(z)}\right\} s_{l}(\varphi)
$$

for $z=e^{i q}, \varphi \in[-\pi,+\pi]$.
Notation. For $a, b \in \mathbb{R}, f:[a, b] \rightarrow \mathbb{R}$ we denote the number of sign changes of $f$ on $(a, b)$ by $S^{-}(f)$.

ThEOREM 2. (a) $\mathscr{T}_{n, s_{l}}\left(\cdot, \prod_{v=1}^{2 n}\left(z-d_{\nu}\right)\right)$ is a irigonometric polynomial of degree $n$ with real coefficients of the form $A \cos n \varphi+B \sin n \varphi+\cdots$,
(b) $\int_{-\pi}^{-\pi} \frac{\left\{\begin{array}{l}\sin k \varphi\} \\ \cos k \varphi\end{array}\right.}{s_{l}(\varphi)} \operatorname{sgn} \mathscr{T}_{n, s_{i}}\left(\varphi, \prod_{v=1}^{m}\left(z-d_{v}\right)\right) d \varphi=0$,

$$
k \in\{0 . \ldots, n-m-1\}
$$

(c) $S^{-}\left(\mathscr{T}_{n, s_{l}}\left(\cdot, \prod_{v=1}^{m}\left(z-d_{y}\right)\right)\right) \geqslant 2 n-1$,
(d) If $3 m_{n} \leqslant 2 n-2 l-1$, then with $\prod_{\nu=1}^{m}\left(z-d_{v}\right)=\sum_{i=0}^{m} c_{k}^{-u^{k}}$ one has

$$
\int_{-\pi}^{-\pi}\left|\frac{\mathscr{F}_{n, s_{i}}\left(\varphi, \prod_{\nu=1}^{m}\left(z-d_{v}\right)\right)}{s_{l}(\varphi)}\right| d \varphi=\frac{4}{\gamma^{2}}\left(A^{2}+B^{2}\right)^{1 / 2} \sum_{l=0}^{m_{i}}\left|c_{k}\right|^{2}
$$

Proof. Let $h_{i n}(z):=\prod_{v=1}^{m}\left(z-d_{v}\right)$. Concerning pari (a), one has, for $z=e^{i \varphi}, \notin \in[-\pi .+\pi]$,

$$
\begin{align*}
& \gamma^{2} \mathscr{T}_{n, s_{l}}\left(\varphi, \prod_{r=1}^{m}\left(z-d_{v}\right)\right) \\
& \quad=\operatorname{Re}\left\{(A-i B) \Psi_{n-2 m} h_{m}^{2}(z)\right\} s_{l}(\varphi) \\
& \quad=\operatorname{Re}\left\{\left.(A-i B) z^{n-2 l-2 m} \frac{g_{l}(z) \frac{h_{m}(z)}{g_{l}(z)} \frac{h_{m}(z)}{h_{m}}}{} \quad s_{l}(\varphi)!h_{m}(z)\right|^{2} .\right. \tag{1}
\end{align*}
$$

Hence

$$
\begin{equation*}
\gamma^{2} \mathscr{T}_{n, s_{l}}\left(\varphi, \prod_{\nu=1}^{m}\left(z-d_{v}\right)\right)=T_{n}\left(\varphi, s_{l}\left|h_{m}\right|{ }^{2}\right) \tag{2}
\end{equation*}
$$

(b) From (2) and Theorem 1 (a), it follows that
for $k \in\{0, \ldots, n-1\}$. Noting that $\left|h_{m}\left(e^{i q}\right)\right|^{2}$ is a trigonometric polynomial of degree $m$. Theorem 1 (b) is proved.
(c) The assertion follows from (3) and Lemma 4.- 5 of [8, p. 108].
(d) As in the proof of Theorem 1, one demonstrates the existence of a real function $\phi$ such that

$$
\left(A^{2}+B^{2}\right)^{1 / 2} \cos (\phi(\varphi)+\alpha)=\operatorname{Re}\left((A-i B) z^{3,-2 I-2 m_{n}} \frac{g_{l}(z) h_{n}(z)}{g_{l}(\bar{z}) \overline{h_{m}}(\bar{z})}\right)
$$

where $e^{i \alpha}=(A+i B) /\left(A^{2}+B^{2}\right)^{1 / 2}$. Therefore with (1),

$$
\begin{align*}
\int_{-\pi}^{+\pi} & \left|\frac{\mathscr{T}_{n, s_{l}}\left(\varphi, \prod_{v=1}^{m}\left(z-d_{v}\right)\right)}{s_{l}(\varphi)}\right| d \varphi \\
& =\frac{\left(A^{2}+B^{2}\right)^{1 / 2}}{\gamma^{2}} \int_{-\pi}^{+\pi}|\cos (\phi(\varphi)+\alpha)|\left|h_{m}\left(e^{i \varphi}\right)\right|^{2} d \varphi . \tag{4}
\end{align*}
$$

Since $3 m \leqslant 2 n-2 l-1$, it follows, by Cauchy's theorem, that

$$
\begin{aligned}
& \int_{-\pi}^{+\pi} e^{-i k \varphi} \cos 2 r(\phi(\varphi)+\alpha) d \varphi \\
& \quad=\int_{|z|=1} z^{-k+(n-l-m) 2 r}\left[\frac{g_{l}(z) h_{m}(z)}{g_{l}^{*}(z) h_{m}^{*}(z)}\right]^{2 r} \frac{d z}{i z} \\
& \quad+\int_{|z|=1} z^{k+\left(n-l-m_{i}\right) 2 r}\left[\frac{\bar{g}_{l}(z) h_{m}(z)}{\bar{g}_{l}^{*}(z) \bar{h}_{m}^{*}(z)}\right]^{2 r} \frac{d z}{i z}=0
\end{aligned}
$$

for $k \in\{0, \ldots, m\}, r \in \mathbb{N}$. Analogously one shows that

$$
\begin{equation*}
\int_{-\pi}^{+\pi} e^{i k \varphi} \cos 2 r(\phi(\varphi)+\alpha) d \varphi=0 \quad \text { for } \quad k \in\{0, \ldots, m\}, \quad r \in \mathbb{N} \tag{5}
\end{equation*}
$$

With the help of the Fourier expansion of $|\cos (\phi+\alpha)|$ and (5), we obtain

$$
\int_{-\pi}^{+\pi}|\cos (\phi(\varphi)+\alpha)|\left|h_{m}\left(e^{i \varphi}\right)\right|^{2} d \varphi=\frac{2}{\pi} \int_{-\pi}^{+\pi}\left|h_{m}\left(e^{i \varphi}\right)\right|^{2} d \varphi
$$

In view of Parseval's formula and (4), Theorem 2(d) is proved.
Now the question arises whether every trigonometric polynomial of degree $n$ with property (b) of Theorem 2 is a polynomial of the form $\mathscr{T}_{n, s_{l}}\left(\varphi, \prod_{v=1}^{m}\left(z-d_{\nu}\right)\right)$. It will be shown that this is valid under appropriate conditions.

The following lemma is known (see, e.g., [7]); $\lambda$ denotes the Lebesgue measure.

Lemma 2. (a) Let $v$ be a bounded function on $[-\pi,+\pi]$ with at most a finite number of discontinuities. If $S^{-}(v) \leqslant 2 n-2$ and

$$
\int_{[-\pi,+\pi]} \frac{\left\{\begin{array}{l}
\sin k \varphi \\
\cos k \varphi
\end{array}\right.}{s_{l}(\varphi)} v(\varphi) d \lambda(\varphi)=0, \quad k \in\{0, \ldots, n-1\},
$$

then $v=0 \lambda$ a.e. on $[-\pi,+\pi]$.
(b) If $v, w$ are sign functions on $[-\pi,+\pi]$ with $S^{-}(v)=k$ and $S^{-}(w)=l$, $k, l \in \mathbb{N}_{0}$, then $S^{-}(v \pm w) \leqslant \min \{l, k\}$.

Theorem 3. Let $n \geqslant l+m+1,3 m \leqslant 2 n-2 l-1$. If $S_{n}$ is a trigonometric polynomial of degree $n$ with leading coefficients $A, B \in \mathbb{R}, A^{2}+B^{2}>0$, $S^{-}\left(S_{n}\right) \geqslant 2 n-1$, and

$$
\int_{-\pi}^{+\pi} \frac{\left\{\begin{array}{l}
\sin k \varphi \\
\cos k \varphi
\end{array}\right.}{s_{l}(\varphi)} \operatorname{sgn} S_{n}(\varphi) d \varphi=0, \quad k \leq\{0, \ldots, n-m-1\}
$$

then there exists a polynomial $\prod_{v=1}^{m}\left(z-d_{v}\right), d_{\nu} \in\{z \in \mathbb{C}| | z \mid<1\}$, such that

$$
S_{n}(\varphi)=\mathscr{T}_{n, s_{l}}\left(\varphi, \prod_{\nu=1}^{m}\left(z-d_{v}\right)\right) \quad(\varphi \in[-\pi,+\pi])
$$

If in addition $\int_{-\pi}^{+\pi} \cos (n-m) \varphi \operatorname{sgn} S_{n}(\varphi) d \varphi \neq 0$ or $\int_{-\pi}^{+\pi} \sin (n-m) \varphi \operatorname{sgn}$ $S_{n}(\varphi) d \varphi \neq 0$, then $d_{v} \in\{z \in \mathbb{C}|0<|z|<1\}$ for $v \in\{1, \ldots, m\}$.

Proof. Put

$$
\begin{equation*}
\frac{1}{4} \int_{-\pi}^{+\pi} \frac{e^{-i k \omega}}{g_{l}\left(e^{i \varphi}\right) \overline{g_{l}\left(e^{i \varphi}\right)}} \operatorname{sgn} S_{n}(\varphi) d \varphi=a_{k} \tag{1}
\end{equation*}
$$

with $a_{k} \in \mathbb{C}$ for $k \in\{n-m, \ldots, n\}$. Furthermore, let

$$
\begin{equation*}
\left[g_{l}^{*}(z)\right]^{2} \sum_{\mu=0}^{m} a_{n-m+\mu} z^{\mu}=\sum_{u=0}^{m} b_{\mu} z^{\mu}+\cdots \tag{2}
\end{equation*}
$$

In view of [1, p. 274-275], for the $m+1$ given numbers $b_{0}, \ldots, b_{m} \in \mathbb{C}$ there exists an analytic rational function in the unit disk such that

$$
L \frac{c_{0}+c_{1} z+\cdots+c_{m_{1}} z^{m_{1}}}{\bar{c}_{0} z^{m_{1}}+\bar{c}_{1} z^{m_{1}-1}+\cdots+\bar{c}_{m_{1}}}=\sum_{\mu=0}^{m_{i}} b_{\mu} z^{\mu}+\sum_{\mu=x_{2}+1}^{x} \gamma_{\mu} z^{\mu}
$$

for $z \in\left\{z \in \mathbb{C}||z| \leqslant l\}\right.$, where $L \in \mathbb{R}^{+}, m_{1} \in \mathbb{N}$ and $m_{1} \leqslant m, c_{i h_{1}} \neq 0$, $\gamma_{\mu} \in \mathbb{C}$ for $\mu \in\{m+1, m+2, \ldots\}$. From the equation

$$
L \frac{c_{0}+\cdots+c_{m_{m}} z^{m_{1}}}{\bar{c}_{0} z^{m_{1}}+\cdots+\bar{c}_{m_{1}}}=L e^{i_{\gamma} \gamma} \frac{\prod_{\nu=1}^{m_{1}}\left(z-a_{v}\right)}{\prod_{\nu=1}^{m_{2}}\left(1-\bar{d}_{v} z\right)}
$$

with $d_{v} \in\{z \in \mathbb{C}| | z \mid<1\}$ for $v=1, \ldots, m_{1}, \gamma \in \mathbb{R}$, it follows from (2) that

$$
\begin{equation*}
L e^{i \gamma} \Omega(z)=\sum_{\mu=0}^{m} a_{n-m+\mu} z^{\mu}+\sum_{\mu=m+1}^{m} \gamma_{\mu}^{\prime} z^{\mu} \tag{3}
\end{equation*}
$$

for $z \in\left\{z \in \mathbb{C}||z| \leqslant 1\}, \gamma_{\mu}^{\prime} \in \mathbb{C}, \mu \in\{m+1, \ldots\}\right.$, where

$$
h_{m_{1}}(z):=\prod_{v=1}^{m_{1}}\left(z-d_{v}\right) \quad \text { and } \quad \Omega(z):=\frac{h_{m_{1}}(z)}{\left[g_{l}^{*}(z)\right]^{2} h_{m_{1}}^{*}(z)}
$$

## Therefore

$$
\begin{align*}
\frac{L e^{i \gamma}}{2 \pi i} \int_{|z|=1} z^{-(k+1)+(n-m)} Q(z) d z & =0 & & \text { for } \quad 0 \leqslant k \leqslant n-m-1  \tag{4}\\
& =a_{k} & & \text { for } \quad n-m \leqslant k \leqslant n
\end{align*}
$$

We consider now the trigonometric polynomial of degree $n-m+m_{1}$

$$
\begin{equation*}
G(\varphi):=\operatorname{Re}\left(e^{i \gamma} z^{n-2 l-m-m_{1}} \xlongequal[g_{l}(z) h_{m_{1}}(z)]{\overline{h_{m_{1}}(z)}}\right)\left|g_{l}(z) h_{m_{1}}(z)\right|^{2}, \tag{5}
\end{equation*}
$$

for $z=e^{i \varphi}, \varphi \in[-\pi,+\pi]$.
As in the proof of Theorem 1(a) one shows that

$$
\int_{-\pi}^{+\pi} \frac{z^{-k}}{g_{l}(z)} \operatorname{sgn} G(\varphi) d \varphi=\frac{4}{\pi} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{2 r+1} I_{r, k} \quad\left(z=e^{i \varphi}\right)
$$

where

$$
I_{r, k}=\int_{-\pi}^{+\pi} \frac{z^{-k}}{\overline{g_{l}(z)} \overline{g_{l}(z)}} \operatorname{Re}\left\{\left[e^{i z^{n-2 l-m-m_{1}}} \frac{g_{l}(z)}{\overline{g_{l}(z)} \overline{h_{m_{1}}(z)}} \bar{h}_{h_{m_{1}}(z)}^{2 r+1}\right\} d \varphi\right.
$$

We obtain for $r=0$

$$
\begin{aligned}
I_{0 . k} & =e^{i \gamma} \int_{|z|=1} z^{n-m-k} \Omega(z) \frac{d z}{i z}+e^{-i \gamma} \int_{|z|=\mathbf{1}} z^{n+k-m} \bar{\Omega}(z) \frac{d z}{i z} \\
& =\frac{e^{i \gamma}}{i} \int_{|z|=1} z^{-(k+1)+(n-m)} \Omega(z) d z .
\end{aligned}
$$

By Cauchy's theorem and the fact that $3 m \leqslant 2 n-2 l-1$,

$$
I_{r, k}=0 \quad \text { for } \quad k \in\{0, \ldots, n\}, \quad r \in \mathbb{N} .
$$

Hence by (4)

$$
\begin{aligned}
\frac{1}{4 e^{i \gamma}} \int_{-\pi}^{+\pi} \frac{z^{-k}}{g_{l}(z)} \operatorname{sgn} G(\varphi) d \varphi & =\frac{1}{2 \pi i} \int_{|z|=1} z^{-(k+1)+(n-m)} \Omega(z) d z \\
& =0 \quad \text { for } \quad 0 \leqslant k \leqslant n-m-1, \\
& =\frac{a_{k}}{L e^{i \gamma}} \quad \text { for } n-m \leqslant k \leqslant n .
\end{aligned}
$$

From (1) and Lemma 1 it follows now that

$$
\int_{-\pi}^{+\pi} \frac{\left\{\begin{array}{l}
\sin k \varphi \\
\cos k \varphi
\end{array}\right.}{s_{l}(\varphi)}\left(L \operatorname{sgn} G(\varphi)-\operatorname{sgn} S_{n}(\varphi)\right) d \varphi=0, \quad k \in\{0, \ldots, n\} .
$$

Since

$$
\begin{aligned}
\operatorname{sgn}\left(L \operatorname{sgn} G(\varphi)-\operatorname{sgn} S_{n}(\varphi)\right) & =\operatorname{sgn} G(\varphi) & \text { for } \quad L>1, \\
& =-\operatorname{sgn} S_{n}(\varphi) & \text { for } \quad L<1,
\end{aligned}
$$

Lemma 2 implies $L=1$. Furthermore, Lemma 2(b) and 2(a) give

$$
\begin{equation*}
\operatorname{sgn} G(\varphi)=\operatorname{sgn} S_{n}(\varphi) \quad(\varphi \in[-\pi,+\pi]) \tag{5}
\end{equation*}
$$

Since $S_{n}$ has at least $2 n-1$ zeros on $(-\pi,+\pi)$, $G$ must be a polynomial of degree $n$; hence $m_{1}=m$.

If $S^{-}\left(S_{n}\right)=2 n$, it follows immediately from (6) that

$$
K G=S_{n}, \quad \text { where } \quad K \in \mathbb{R} \mid\{0\} .
$$

Since a trigonometric polynomial of degree $n$ cannot have $(2 n-1)$ simple real zeros on $[-\pi,+\pi)$, it follows from (6) that for $S-\left(S_{n}\right)=2 n-1$,

$$
G(-\pi)=S_{n}(-\pi)=0 \quad \text { and thus } \quad K G=S_{n} \text {, where } K \in \mathbb{R}\{\{0\} \text {. }
$$

In view of (5) the theorem is proved. If $a_{n-m} \neq 0$, it follows from (3), by putting $z=0$, that $d_{v} \in\{z \in \mathbb{C}|0<|z|<1\} ; \nu \in\{1, \ldots, m\}$.

Notation. Let $\tilde{P}_{n}, n \in \mathbb{N}_{0}$, denote the real trigonometric polynomials of degree equal or less than $n$. If $R_{n} \in \tilde{P}_{n}$ is such that

$$
\int_{[-\pi,+\pi]} \frac{\left|f(\varphi)-R_{n}(\varphi)\right|}{S_{l}(\varphi)} d \lambda(\varphi)=\inf _{S_{n} \tilde{F}_{n}^{\prime}} \int_{[-\pi,+\pi]} \frac{\left|f(\varphi)-S_{n}(\varphi)\right|}{S_{l}(\varphi)} d \lambda(\varphi),
$$

we call $R_{n}$ a best approximation to $f \in L^{1}[-\pi,+\pi]$ from $\tilde{P}_{n}$ with respect to the weight function $1 / s_{l}$.

Theorem 2 enables us to give a general representation of the error function when approximating a fixed trigonometric polynomial by trigonometric polynomials of lower degree.

Corollary 1. Suppose $n, m, l \in \mathbb{N}_{0}, n \geqslant m+l+1,3 m \leqslant 2 n-2 l-1$. Let $S_{n}$ be a trigonometric polynomial of degree $n$ and $R_{n-m-1}$ be the best
approximation to $S_{n}$ from $\tilde{P}_{n-m-1}$ with respect to the weight function $1 / s_{l}$. If $S_{n}-R_{n-m-1}$ has $2(n-k), k \in\{0, \ldots, m\}$, simple zeros on $[-\pi,+\pi)$, then there exists a polynomial $\prod_{v=1}^{m-k}\left(z-d_{v}\right), d_{v} \in\{z \in \mathbb{C}| | z \mid<1\}$, and $a$ trigonometric polynomial $t_{k} \in \tilde{P}_{k}$, which is nonnegative on $[-\pi,+\pi)$, such that

$$
\frac{S_{n}(\varphi)-R_{n-m-1}(\varphi)}{s_{l}(\varphi)}= \pm \frac{\mathscr{T}_{n-k, s_{l}}\left(\varphi, \prod_{v=1}^{m-k}\left(z-d_{\nu}\right)\right) t_{k}(\varphi)}{s_{l}(\varphi)}
$$

(where the leading coefficients of $\mathscr{T}_{n-k, s_{l}}\left(\varphi, \prod_{v=1}^{m n-k}\left(z-d_{v}\right)\right.$ ) have to be chosen suitably).

Proof. Since $S_{n}-R_{n-m-1}$ is a polynomial of degree $n$ which has exactly $2(n-k)$ simple zeros on $[-\pi,+\pi), S_{n}-R_{n-m-1}$ can be represented as

$$
S_{n}-R_{n-m-1}=V_{n-k} Z_{k}
$$

where $V_{n-k s}$ is a trigonometric polynomial of degree $n-k$ which has exactly $2(n-k)$ simple zeros on $[-\pi,+\pi)$, and $Z_{k}$ is a trigonometric polynomial of degree $k$ which is nonpositive or nonnegative on $[-\pi,+\pi)$. Therefore

$$
\int_{-\pi}^{+\pi} \frac{\left\{\begin{array}{c}
\sin j \varphi \\
\cos j \varphi
\end{array}\right\}}{s_{l}(\varphi)} \operatorname{sgn} V_{n-k}(\varphi) d \varphi=0
$$

for $j \in\{0, \ldots,(n-k)-(m-k)-1\}$ (see, e.g., [8, Corollary 1, p. 105]). Applying Theorem 3 to $V_{n-k}$, the theorem is proved.

Concerning the Solotareff problem for weighted trigonometrical approximation, we need

Notation. Let $s_{l}(\varphi)=\gamma^{2}\left|\prod_{v=1}^{l}\left(z-\left(a_{v}+i b_{v}\right)\right)\right|^{2}, z=e^{i \varphi}$. For $n \in \mathbb{N}$, $n \geqslant l+2, \quad A, B, \sigma, \tau \in \mathbb{R}, \quad R_{n, s_{l}, A, B}(\cdot, \sigma, \tau)$ denotes that trigonometric rational function which deviates least from zero on $[-\pi,+\pi]$ among all rational functions of the form

$$
\begin{gathered}
\left(A \cos n \varphi+B \sin n \varphi-2\left(B \sum_{\nu=1}^{l} b_{\nu}+A \sum_{\nu=1}^{l} a_{\nu}+\sigma\right) \cos (n-1) \varphi\right. \\
\left.-2\left(B \sum_{\nu=1}^{l} a_{\nu}-A \sum_{\nu=1}^{l} b_{\nu}+\tau\right) \sin (n-1) \varphi+\cdots\right) / s_{l}(\varphi)
\end{gathered}
$$

The solution of the Solotareff problem follows immediately from Corollary 1. For, if $\sigma^{2}+\tau^{2}<A^{2}+B^{2}$, we have

$$
R_{n, s_{l}, A, B}(\varphi, \sigma, \tau)=\mathscr{T}_{n, s_{l}}\left(\varphi, z-\left(\frac{(A \sigma+B \tau)+i(B \sigma-A \tau)}{\left(A^{2}+B^{2}\right)}\right)\right) / s_{l}(\varphi)
$$

and (Theorem 2(d))

$$
\int_{-\pi}^{+\pi} R_{R \cdot s_{l}, A, B}(\varphi, \sigma, \tau) d \phi=\frac{4}{\gamma^{2}}\left(A^{2}-B^{2}\right)^{1,2}\left(1+\frac{\left(\sigma^{2}+\tau^{2}\right)}{\left(A^{2}+B^{2}\right)}\right)
$$

For $\sigma^{2}+\tau^{2} \geqslant A^{2}+B^{2}$ one obtains $R_{n, s_{l}, A, B}(\cdot, \sigma, \tau)$ by multiplication of $T_{n-1}\left(\cdot, s_{l}\right) / s_{l}$ by a trigonometric polynomial of degree 1 , which is positive on $[-\pi, \div \pi)$.

Now we consider the representation of the extremal function if, in problem (b), instead of trigonometric polynomials algebraic polynomials are given. As mentioned before, this problem can be regarded as a special case of problem (b).

Notation. $p_{l}(x)=\prod_{v=1}^{\prime}\left(1-x / x_{v}\right)$ denotes an algebraic polynomial of degree $l$ which is positive on $[-1,+1]$. Furthermore, let $\hat{U}_{n}\left(\cdot, p_{1}\right)=$ $2^{n} U_{n}\left(\cdot, p_{1}\right)$, where $U_{n}\left(\cdot, p_{l}\right)$ is defined in [5, p. 36]. Note that $\hat{U}_{n}(\cdot, 1)=\dot{U}_{n}$ : where $U_{n}$ is the Chebyshev polynomial of 2nd type.

Definition 4. Let $\prod_{v=1}^{m}\left(x-d_{v}\right), m \in \mathbb{N}_{0}$, be a real polynomial with $d_{v} \in\{z \in \mathbb{C}| | z \mid<1\}$, where $\prod_{\nu=1}^{0}\left(x-d_{v}\right):==1$. Furthermore, let $\prod_{v=1}^{m}\left(x-d_{v}\right)^{2}=\sum_{\mu=0}^{2 m} a_{\mu} x^{\mu}$. We define for $n \in \mathbb{N}_{0}, n \geqslant l \perp m$,

$$
\mathscr{M}_{n, u_{1}}\left(x, \prod_{v=1}^{m}\left(x-d_{v}\right)\right):=2^{-n} \sum_{u=0}^{2 m i} a_{u} \hat{O}_{n-2 m_{n-\mu}}\left(x, p_{l}\right) \quad(x \in[-1,-1])
$$

We obtain from Definition 4 that $\mathscr{H}_{n, p_{l}}\left(\cdot, \prod_{v=1}^{m}\left(x-d_{v}\right)\right)$ is a polynomial of degree $n$ with leading coefficient 1 and $(\varphi=\operatorname{arc} \cos x, A=0, B=1$ )

$$
2^{n} \mathscr{M}_{n, p_{l}}\left(x, \prod_{\nu=1}^{m}\left(x-d_{\nu}\right)\right)=\frac{\mathscr{T}_{n+1, p_{l}(\cos \alpha)}\left(\varphi, \prod_{\nu=1}^{m}\left(\tilde{z}-d_{\nu}\right)\right)}{\sin \varphi} .
$$

Now we formulate Theorem 3, which is the basic result of this paper, for the case of polynomial approximation. Analogously Theorem 2 and Corollary 1 can be transformed.

Theorem 4. Let $n \geqslant l+m, 3 m \leqslant 2 n+1-21$. If $q_{n}$ is a polynomial of degree $n$ with leading coefficient $1, S^{-}\left(q_{n}\right)=n$ and

$$
\int_{-1}^{+1} \frac{x^{k}}{p_{l}(x)} \operatorname{sgn} q_{n}(x) d x=0, \quad k \in\{0, \ldots, n-m-1\}
$$

then there exists a real polynomial $\prod_{v=1}^{m}\left(x-d_{v}\right), d_{v} \in\{z \in \mathbb{C}| | z<1\}$, sucit that

$$
q_{n}(x)=\mathscr{W}_{n, p_{i}}\left(x, \prod_{v=1}^{m}\left(x-d_{v}\right)\right) \quad(x \in[-1, \div 1])
$$

Proof. $q_{n}$ can be represented in the form $\sum_{i=1}^{n+1} \lambda_{i}(\sin i \operatorname{arc} \cos x /$ $\sin \operatorname{arc} \cos x$ ), where $\lambda_{i} \in \mathbb{R}, \lambda_{n+1}=1 / 2^{n}$. If we put $S_{n+1}(\varphi)=\sum_{i=1}^{n+1} \lambda_{i} \sin i \varphi$, then for $k \in\{1, \ldots, n-m\}$,

$$
0=\int_{-1}^{+1} \frac{U_{k-1}(x)}{p_{l}(x)} \operatorname{sgn} q_{n}(x) d x=\int_{0}^{\pi} \frac{\sin k \varphi}{p_{l}(\cos \varphi)} \operatorname{sgn} S_{n+1}(\varphi) d \varphi
$$

Now it follows from Theorem 3, $S_{n+1}$ being a sine polynomial, that

$$
2^{n} S_{n+1}(\varphi)=\mathscr{T}_{n+1, p_{l}(\cos \varphi)}\left(\varphi, \prod_{\nu=1}^{m}\left(z-d_{p}\right)\right), \quad d_{\nu} \in\{z \in \mathbb{C}| | z \mid<1\}
$$

where the $d_{\nu}$ are real or complex conjugate. Hence

$$
\begin{aligned}
q_{n}(x) & =\frac{S_{n+1}(\varphi)}{\sin \varphi}=\frac{\mathscr{T}_{n+1, p_{l}(\cos \varphi)}\left(\varphi, \prod_{\nu \nu=1}^{m}\left(z-d_{\nu}\right)\right)}{2^{n} \sin \varphi} \\
& =\mathscr{U}_{n, p_{l}}\left(x, \prod_{\nu=1}^{m}\left(x-d_{\nu}\right)\right)
\end{aligned}
$$

For $p_{l}=1$ Theorem 4 was published by the author in [6]. See also [2, 4]. An application of Theorem 4 gives us the solution of the Solotareff problem for weighted polynomial approximation.

Notation. Put $\alpha_{\nu}=\frac{1}{2}\left(c_{v}+1 / c_{\nu}\right), c_{v} \in \mathbb{C},\left|c_{\nu}\right|<1$ for $v \in\{1, \ldots, l\}$, and $p_{l}(x)=\prod_{v=1}^{l}\left(1-x / \alpha_{v}\right)$. For $n \in \mathbb{N}, n \geqslant l+1, \sigma \in \mathbb{R}, r_{n, p_{l}}(\cdot, \sigma)$ denotes that rational function deviating least from zero on $[-1,+1]$ among all functions of the form

$$
\left\{x^{n}-\left(\sum_{\nu=1}^{l} c_{\nu}+\sigma\right) x^{n-1}+\sum_{\mu=0}^{n-2} b_{\mu} x^{\mu}\right\} / p_{l}
$$

with $\left(b_{0}, \ldots, b_{n-2}\right) \in \mathbb{R}^{n-1}$.
We obtain, from Theorem 4, that

$$
\begin{aligned}
p_{l} \cdot r_{n, p_{l}}(\cdot, \sigma) & =\mathscr{U}_{n, p_{l}}(\cdot,(x-\sigma)) & & \text { for }|\sigma|<1, \\
& =(x-\sigma) U_{n-1}\left(\cdot, p_{l}\right) & & \text { for } \quad|\sigma| \geqslant 1,
\end{aligned}
$$

and from Theorem $2(\mathrm{~d})$, with $\gamma^{2}=1 / \prod_{1}^{l}\left(1+c_{v}{ }^{2}\right)$, that

$$
\begin{aligned}
\int_{-1}^{+1}\left|r_{n, p_{l}}(x, \sigma)\right| d x & =2^{-n+1}\left(1+\sigma^{2}\right) \prod_{\nu=1}^{l}\left(1+c_{\nu}^{2}\right) \quad \text { for }|\sigma|<1 \\
& =2^{-n+2}|\sigma| \prod_{\nu=1}^{l}\left(1+c_{\nu}^{2}\right) \quad \text { for }|\sigma| \geqslant 1
\end{aligned}
$$

## 4. Further Applications

With the aid of the polynomials introduced in Definition 3 we are able to determine the location of the zeros of the error function for the polynomial approximation. For results of this type see also [7].

Notation. For $n \in \mathbb{N}_{0}$, let $P_{n}$ denote the real polynomials of degree $n$ or less. Furthermore, let $Z(f)=\{x \in[a, b] \mid f(x)=0\}$ for $f \in L^{2}[a, b]$.

Independent of the polynomials introduced above, the following theorem can be shown.

Theorem 5. Suppose that $f \in C[a, b]$ and that $p_{n-1}$ is the best approximation to f from $P_{n-1}$ on $[-1,+1]$. If $S^{-}\left(f-p_{n-1}\right) \geqslant n+1$ and $f-p_{n-1}$ has a finite number of distinct zeros in $[-1,+1]$, then $f-p_{n-1}$ changes sign at least once in each interval $(-\cos (i-1) \pi /(n+1),-\cos i \pi /(n+1))$, $i=1, \ldots, n+1$.

Proof. According to Rice [8],

$$
\int_{-1}^{+1} x^{k}\left[\operatorname{sgn} U_{n}(x)-\operatorname{sgn}\left(f-p_{n-1}\right)(x)\right] d x=0, \quad k \in\{0, \ldots, n-1\}
$$

Assume there exists a $j \in\{1, \ldots, n+1\}$ such that $f-p_{n-1}$ does not change sign in the interval $(-\cos (j-1) \pi /(n+1),-\cos j \pi /(n+1))$. Then $\operatorname{sgn} U_{n}(x)(\overline{+}) \operatorname{sgn}\left(f-p_{n-1}\right)(x)=0$ for $x \in(-\cos (j-1) \pi /(n+1)$, $-\cos j \pi /(n+1)$ ), from which we can conclude that $\operatorname{sgn} U_{n}\left(\bar{q}_{+}\right) \operatorname{sgn}\left(f-p_{n-1}\right)$ has at most $(n-1)$ changes of $\operatorname{sign}$ on $(-1,+1)$. From Lemma 2(a) it follows now that $\left.\operatorname{sgn} U_{n}={ }_{(-)}^{+}\right) \operatorname{sgn}\left(f-p_{n-1}\right)$. This is in contradiction to $S-\left(f-p_{n-x}\right) \geqslant n+1$.

Lemma 3 (Meinardus [5, p. 34]). The zeros $(-1<) x_{1}(d)<x_{2}(d)<\cdots<$ $x_{n}(d)(<1)$ of the polynomial $2^{n} \mathscr{U}_{n, 1}(\cdot, x-d)=U_{n}-2 d U_{n-1}+d^{2} U_{n-2}$ are increasing with respect to $d \in(-1,+1)$. Furthermore, $x_{i}(0)=$ $-\cos i \pi /(n+1), i=1,2, \ldots, n$.
Proof. Since $U_{n}\left(x_{i}(d)\right)-2 d U_{n-1}\left(x_{i}(d)\right)+d^{2} U_{n-2}\left(x_{i}(d)\right)=0$,

$$
\left(x_{i}(d)-\frac{2 d}{1+d^{2}}\right) T_{n}^{\prime}\left(x_{i}(d)\right)+n\left(\frac{1-d^{2}}{1+d^{2}}\right) T_{n}\left(x_{i}(d)\right)=0
$$

where $T_{n}$ denotes the Chebyshev polynomial of the first kind. If we put $d=\left(1-\left(1-\tau^{2}\right)^{1 / 2}\right) / \tau$ for $\tau \in(-1,+1), \tau \neq 0$, it follows from $[5, p .34]$ that

$$
\frac{d x_{i}}{d \tau}=\frac{1-x_{i}^{2}}{n\left(1-\tau^{2}\right)^{1 / 2}\left(1-\tau x_{i}\right)+\left(1-\tau^{2}\right)}>0 .
$$

Theorem 6. Let $f \in C^{n+1}[-1,+1], f^{(n+1)}(x)>0$ for $x \in[-1,+1]$, let $p_{n}=a_{n} x^{n}+\cdots$ be its best approximation from $P_{n}$ and $p_{n-1} \neq p_{n}$ its best approximation from $P_{n-1}$ with $S^{-}\left(f-p_{n-1}\right)=n+1$. If $a_{n}>0(<0)$, then $f-p_{n-1}$ changes sign exactly once in each interval $(-\cos i \pi /(n+2)$, $-\cos i \pi /(n+1))((-\cos (i-1) \pi /(n+1),-\cos i \pi /(n+2))), i=1, \ldots, n+1$.

Proof. Since $p_{n}$ and $p_{r_{n-1}}$ are best approximations to $f$, it follows from [9, p. 120] and [8, p. 105] that

$$
\begin{aligned}
0 & <\int_{-1}^{+1}\left(p_{n-1}(x)-p_{n}(x)\right) \operatorname{sgn}\left(f-p_{n-1}\right)(x) d x \\
& =-a_{n} \int_{-1}^{+1} x^{n} \operatorname{sgn}\left(f-p_{n-1}\right)(x) d x
\end{aligned}
$$

Using the fact that there exists a $d^{*} \in(-1,+1) \backslash\{0\}$ such that $\operatorname{sgn}\left(f-p_{n-1}\right)(x)= \pm \operatorname{sgn} \mathscr{U}_{n+1,1}\left(x,\left(x-d^{*}\right)\right)$ and, in fact, $\operatorname{sgn}\left(f-p_{n-1}\right)(x)=$ $\operatorname{sgn} \mathscr{U}_{n+1,1}\left(x,\left(x-d^{*}\right)\right.$ ), since $f^{(n+1)}>0$, we get

$$
\begin{aligned}
0 & <-\frac{a_{n}}{2^{n}} \int_{-1}^{+1} U_{n}(x) \operatorname{sgn} \mathscr{U}_{n+1,1}\left(x,\left(x-d^{*}\right)\right) d x \\
& =-\frac{a_{n}}{2^{n} \pi i} \int_{|z|=1} z^{-1} \frac{\left(z-d^{*}\right)}{\left(1-d^{*} z\right)} d z=\frac{a_{n} d^{*}}{2^{n-1}}
\end{aligned}
$$

Hence sgn $a_{n}=\operatorname{sgn} d^{*}$. According to Lemma 3 and Theorem 5 the theorem is proved.

Note that since $f^{(n+1)}(x)>0$ for $x \in[-1,+1], p_{n}$ is that polynomial which interpolates $f$ at the zeros of $U_{n+1}$. Therefore the leading coefficient $a_{n}$ of $p_{n}$ can be determined quite simply. Finally it should be noted that with the help of the polynomials $\mathscr{U}_{n, p_{t}}\left(\cdot, \prod_{v=1}^{m}\left(x-d_{v}\right)\right)$, sufficient conditions can be stated for the uniqueness of the best weighted (weight $1 / p_{l}$ ) polynomial approximation to a piecewise continuous function with jumps. For $p_{l}=1$ see [6].

## References

1. N. I. Achieser, "Vorlesungen über Approximationstheorie," Akademie-Verlag, Berlin, 1953.
2. N. I. Achieser and M. Krein, The $L$-problem of moments, in "Some Questions in the Theory of Moments" (N. I. Achieser and M. Krein, Eds.), Translations of Mathematical Monographs, Vol. 2, Amer. Math. Soc., Providence, R.I., 1962.
3. J. H. Freilich, Best and partial best $L_{1}$-approximations by polynomials to certain rational functions, J. Approximation Theory 15 (1975), 41-49.
4. J. Geronimus, Sur quelques propriétés extrémales de polynomes dont les coefficients premiers sont donnés, Comm. Kharkov Math. Soc. 12 (1935), 49-59.
5. G. Mernardus, "Approximation von Funktionen und ihre numerische Behandlung," Springer-Verlag, Berlin, 1964.
6. F. Peherstorfer, Erweiterung des Satzes von Markoff, in "Linear Spaces and Approximation (P. L. Butzer and B. Sz.-Nagy, Eds.), pp. 423-431 (Proceedings, Conf. Math. Res. Inst. Oberwolfach, Aug. 20-27, 1977), ISNM 40, Birkhäuser, Basel, 1978.
7. A. Pinkus and Z. Ziegler, Interlacing properties of the zeros of the error function in best $L_{p}$-approximations, J. Approximation Theory 27 (1979), 1-18.
8. J. Rice, "Approximation of Functions," Vol. 1, Addison-Wesley, Reading, Mass., 1964.
9. I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin, 1970.
10. G. Szegö, On a problem of the best approximation, Abh. Math. Sem. Unic. Hamburg 27 (1964), 193-198.

[^0]:    * This paper was supported by the Austrian "Fonds zur Förderung der wissenschaftlichen Forschung."

