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1. INTRODUCTION

Bernstein (see [1, p. 249-254]) studied the following problem:

(a) Among all rational functions of the form

x" + LF~Ol GiX i

PI(X)

where Pi is a real fixed polynomial of degree t, 11 ~ I, which is posmve
in the interval [-1, +1], to find that one which has the least deviation
from zero in the Ll-norm.

In this paper we consider the following problem, which can be regarded
as a generalization of (a):

(b) Let Tn /51 be that function, which has the least deviation from
zero in the L I-norm among all functions of the form

L;~n-k (Ai cos irp + Hi sin irp) + LF~Ok-l (ai cos hp + bi sin irp)
s;( rp)

where 'P E [-rr, rr] and An " .. , A n- k , Hn " .. , B n- k E!R are given, (ao " .. ,
an-I'-l' bo " .. , bn-k-J E 1R2n-21" and Sl is a fixed trigonometric polynomial
of degree I, II ~ 1+ k + 1, with real coefficients, which is positive in the
interval [-rr, +rr). How can the extremal function T n /51 be represented?

Problem (b) for k = 0 in the Chebyshev norm was solved by Szego [10].

* This paper was supported by the Austrian "Fonds zur Fbrderung del" wissenschaft­
lichen Forschung."
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2. ON THE PROBLEM OF SZEGO IN THE V-NORM

k E {O, ... , n - l}.

DEFINITION 1 (see [10]). Let Sl be a trigonometric polynomial of degree I
with real coefficients which is positive on [-7T, +7T). Then Sl can be repre­
sented in the form

Sleep) = y 2
1 gl(Z)I2,

where y E ~+, gl(Z) = TI~~1 (z - zv), Zv E {z E c II Z I < I}, Z = ei"', ep E

[-7T, +7T]. We define for A, B E~, A2 + B2 > 0, 11 E No,

for Z = ei"', ep E [-7T, +7T].
If 11 :?: I + 1, then Tn ( ep, Sl) is a trigonometric polynomial of degree 11

with real coefficients and is of the form A cos nep + B sin nep + :".
Notation. In the following let lJIn(z) = zn-21( gl(Z)/gl(Z» and gt(z) =

zlgl(rl ) = TI~~1 (l - zvz), the reciprocal polynomial of gl(Z),

DEFINITION 2. Let a = X o < Xl < ... < X;, = b, r E N, be a decom­
position of the interval [a, b]. We say that a function v defined on [a, b]
is a sign function on [a, b], if either v or -v takes the value (-IV on the
interval (Xj-l , Xj), j = 1,... , r.

It is easy to see that the following lemma is valid.

LEMMA 1. If L' is a sign function on [-7T, +7T], then, for kENo,

The following theorem now gives us the solution of the problem of Szego
in the V-norm. Concerning the methods used in the proof of Theorem 1,
we refer to [1, p. 252] and [3].

THEOREM 1. Let n :?: 1+ 1.

Isin kepi

f+'1T /cos kepi .
(a) "_" Sleep) sgn Tn(ep, Sl) dep = 0,

(b) If SnCep) = A cos nep + B sin nep + 'L.;':ol (a i cos iep + bi sin iep),
Sn oF T n(', Sl) is a trigonometric polynomial, then

i +'1T ISn(ep) I d > J+n" I Tn(f{!, sl)1 dep = 4
2

(A2 + B2)1/2.
-" Sleep) ep -'1T Sleep) y
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Proof (a) Since 1 = If'n(z) If'nCz) = i lJ'n(z);2 for z = eiq), Cf EO [-77, T 7T],
there exists a real function c/; such that ei,f>(q)) = lJ'iz) (z = ei'P, cp E [-77, +17)),
Therefore

where e" == (A + iB)(A2 + B2)1/2.
Considering the expansion

4 X (-1)"
sgn cos(c/; + e<) = -:;; ~o 2r + 1 eos(2r + 1)(4) + (1:),

where (z = elO', cp E [-77, --j-77D

'<Nc have

with (z = eiO') Jr." = f~; (Z-/')gl(Z) gl(Z)) Re{[e i o:lf'n(z)]2"-r1} dcp.
An elementary calculation gives

(2)

Since I:::" : < 1 for v = I, ... , I and -k - 1 + 1+ (n - 1)(2r + 1) ~ 0 for
k E {O,... , II - I}, rENo, both integrands are analytic in the unit disk

By Cauchy's theorem,

for k E {O,..., 11 - I}, r E 1\1 0 '

Part fa) of Theorem 1 follows now from Lemma 1.
Concerning (b), it follows from (a) and Lemma 4.-4 of [8, p. 103] that
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Tn(rp, Sl)/Sl(rp) is the unique extremal function. From the proof of (a) we
obtain with the aid of (1) .

Using the formula

2 4 '" (-It
I cos(4>(rp) + a)j = -:;; - -;; ~1 4r 2 _ I cos 2r(4>(rp) + a)

and, as is easy to see by (2),

J
+11

cos 2r(4>(rp) + a) drp = 0
-IT

we have

for r EN,

J
+11 ') J+11I cos(4)(rp) + a)/ drp = ; drp = 4.

-n -n

The result now follows from (3).

3. REPRESENTATION OF TIlE EXTREMAL FUNCTION OF PROBLEM (b)

DEFINITION 3. Assume n, I, m E No , and let

tn 2m· 2m-l

TI (z - dv? = L alLzlL + i L blLzlL ,
v~l IL~O IL=O

where dv E{z Eell Z I < I}, aIL' blL EIR. Let n::l (z - dY = I for m = o.
We define for 11 ?: 1+ m + I

where

2T'( ). R I(B + 'A) n-21 gl(Z)I ()Y n cp, Sl • = e l Z 0= Sl rp
gl(Z)

for Z = ei<v, rp E [-17, +17]'

Notation. For G, bE IR, f: [a, b] -.. IR we denote the number of sign
changes off on (a, b) by S-(f).
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TBEOREM 2. (a) !Tn ,.,(-, n::l (z - dv» is a trigonometric polynomial of
degree n ;rith real coefficients of the form A cos nep + B sin ncp + ...,

jsin krpi

(b) J
'_-,," (cos kepI (' m )() sgn !Tn •s , (P, TI (z - dJ drp = 0,

51 (P ,'~l

k E {o.... , 11 - iii - I},

(c) 5- {Y".SI {., i] (Z - dv»)'') ;;;:: 211 - 1,
, \ .-1 ,

~~ '!T (, nm
(.,. - d» Ll m

r I n,./.r, v~l - v I d - ~ 'A2 B2)1!2" , 12
I ( ) ep - 2 \ + L ~ Ck .

'-r. ' 51, rp Y 1:~D

Proof Let h",(z): = n:~l (z - dv). Concerning par~ (a), one has, for
z = ei<v, 'f E [-:7. -+-n],

= Re{(A - iB) lJfn _ 2mh",2(z)} 5l(ep)

= Re l(A - iB) zn-2l-2m gl(Z) hm(z),ls/«r) : h",(z) 1
2 , (1)

, g/(z) h",(z)

Hence

(21

(b) From (2) and Theorem lea), it follows that

for k E {D, ... , 11 - i}. Noting that I h",(ei"')]2 is a trigono111etric polynomial
of degree m, Theorem l(b) is proved.

(c) The assertion follows from (3) and Lemma 4.-6 of [8, p. 108].

ed) As in the proof of Theorem l, one demonstrates the existence
of a real function ep such that

(A2 + B2)l!2 cos(ep(rp) + 0:) = Re (A - iB) Z"-21-2'" ~~(~) !:m(~~ 'I,
g/(L.) rll!!(~)'
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where eia = (A + iB)/(A2 + B2)1/2. Therefore with (1),

J+""/ Yn.szCep, n;:l (z - dv» Idep
-r. Sleep)

(A2 + B2)1/2 .+IT

= 2 J I cos(ep(ep) + ex) I I hm(ei",)1 2dep. (4)
Y -IT

Since 3m ~ 2n - 21 - I, it follows, by Cauchy's theorem, that

tIT rikq; cos 2r(ep(ep) + ex) dep
-IT

= r z-k+(n-l-m)2r [ gtCz) hm(z) ]2r dz
" Izl~l gi(z) h,~(z) ;z

--L ( 7k+(n-l-m)2r [ gl(Z) lim(z) ]2r dz = G
I Jlzl~l - gi(z) h,~{z) ;z

for k E {G, ..., m}, r EN. Analogously one shows that

rIT
eikq; cos 2r(ep(ep) + ex) dep = G

"-IT

for k E {G,... , m}, r E N. (5)

With the help of the Fourier expansion of I cos(ep + ex)I and (5), we obtain

In view of Parseval's formula and (4), Theorem 2(d) is proved.
Now the question arises whether every trigonometric polynomial of

degree n with property (b) of Theorem 2 is a polynomial of the form
5;..s/ep, n::l (z - dJ). It will be shown that this is valid under appropriate
conditions.

The following lemma is known (see, e.g., [7]); ,\ denotes the Lebesgue
measure.

LEMMA 2. (a) Let v be a bounded function on [-17, +17] with at most
afinite number of discontinuities. IfS-(v) ~ 2n - 2 and

I sin kepi

i leos kepI veep) d'\(ep) = 0,
[-IT.+r.] Sleep)

k E {O,... , n - I},

then v = °,\ a.e. on [-17, +17J.
(b) Ifv, waresignfunctionson [-17, +17J withS-(v) = kandS-(w) = I,

k, 1E No, then S-(v ± w) ~ min{/, k}.
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THEOREM 3. Let n ~ 1+ m + 1, 3m ~ 2n - 2l - 1. IfSn is a trigonom­
etric polynomial of degree n with leading coefficients A, BE IR, A2 -T- B2 > 0,
S-(5,,) ~ 2n - 1, and

Isin kepi

,(+" leos kepI s ( ) d 0
() sgn "ep ep = ,

"-'iT Sl ep
k E {G,... , n - m - I},

then there exists a polynomial TI:l (z - dv), dv E {z E C ! I z i < I}, such that

(rp E [-rr, 7rr]).

If in addition J~: cos(n - m)rp sgn S,,( ep) dep cf= 0 or J~: sin(n - m)<p sgn
S,,(rp) dep =1= 0, then dv E {z Eel 0 < [ z I < I} for v E {I,... , m}.

Proof Put

1 .+or e- il,,,,

4-J (.) (")sgnS,,(rp)d<p=ak ,
-or g/ e'''' gl e''''

with ak E C for k E {n - m,... , n}. Furthermore, let

(1)

(2)

In view of [1, p. 274-275], for the m + 1 given numbers bo ,,,., bin E C
there exists an analytic rational function in the unit disk such that

for Z E {z E ell z I ~ I}, where L E IR+, ml E 1\1 and It1l :'( m, eml " 0,
y" E C for f.L E {m + 1, m + 2,...}. From the equation

m n"'l ( ")
L

Co + ... + cmlZ 1 L" v~l Z - av-=-""__---'-----'."""-_ = e'Y ===~~_-=-'-c

C zm l + ... + c TIm l (l - azlo ml ~=1 Y I

with dv E {z Eel! Z I < I} for v = 1,... , m1 , YE IR, it follows from (2) that

m m

LeiYQ(z) = L: an_m+"z" + L: y~z"
~=o u=,n--t-l

for Z E {z E C II Z I ~ I}, y~ E C, f.L E {m T l, ...}, where

(3)

Ttll

hmiz) := Il (z - dv)
",=1

and
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for o::s;; k ::s;; n - m - 1,

for n - m ::s;; k ::s;; n. (4)

We consider now the trigonometric polynomial of degree n - In + ml

for z = ei'P, ep E [-17, +17].
. As in the proof of Theorem lea) one shows that

I
-t- 1T Z-k 4 00 (-1)'
-~ sgn G(ep) dep = - L 2 1 1".1<

-'IT gz(Z) gz(z) 17 r=O r +

where

We obtain for r = 0

= e~Y r r(k+l)+(n-rn).Q(z) dz.
l JIzl=1

By Cauchy's theorem and the fact that 3m ::s;; 2n - 2/- 1,

Hence by (4)

I r •k = 0 for k E {O,... , n}, r E N.

_ 1_ f+1T Z-k 1 f
--== sgn G(ep) dep = -. z-(k+O+(n-ml.Q(z) dz

4eiY
-To gz(z) gz(z) 2m Izl~l

= 0 for O::s;; k ::s;; n - m - 1,

for n - m ::s;; k ::s;; n.
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From (1) and Lemma 1 it follows now that

69

\ sin kepI

f+" teas k<p)
() (L sgn G(<p) - sgn Sn(<P)) d<p = 0,

-'IT SI <p

Since

sgn(L sgn G(<p) - sgn Sn(<P)) = sgn G(<p)

= -sgn Sn(tp)

k E {O,... , n}.

for L > 1,

for L < 1,

Lemma 2 implies L = 1. Furthermore, Lemma 2(b) and 2(a) give

sgn G(<p) = sgn S,,(<p) (6)

Since Sn has at least 2n - 1 zeros on (-7T, +7T), G must be a polynomial of
degree n; hence m l = m.

If S-(S,,) = 2n, it follows immediately from (6) that

KG = S", where K E IR\{O}.

Since a trigonometric polynomial of degree 11 cannot have (211 - 1) simple
real zeros on [-7T, +7T), it follows from (6) that for S-(5.,,) = 211 - 1,

and thus KG = S" , where K E IR\{O}.

In view of (5) the theorem is proved. If an - m =f= 0, it follows from (3), by
putting z = 0, that dv E {z Eel 0 < I z I < I}, v E {l,... , m}.

Notation. Let Pn , n E No, denote the real trigonometric polynomials of
degree equal or less than n. If R n E Pn is such that

we call R n a best approximation tofE V[-7T, +7T] from Pn with respect to
the weight function 1/Sl •

Theorem 2 enables us to give a general representation of the error function.
when approximating a fixed trigonometric polynomial by trigonometric
polynomials of lower degree.

COROLLARY 1. Supposen, m, I E No, n ;;?o In + 1+ 1, 3m ~ 2n - 2/- ~.

Let S" be a trigonometric polynomial of degree nand R,,-m-o be the best
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approximation to Sn from Pn- m - 1 with respect to the weight function l/s£.
If Sn - Rn- m- 1 has 2(n - k), k E {O,... , m}, simple zeros on [-7T, +7T),
then there exists a polynomial TI~:~k (z - dv), dv E {z E c II z I <:; I}, and a
trigonometric polynomial tk E Pk , which is nonnegative on [-7T, +7T), such that

Sn(ep) - Rn-m-1(ep) = -+- .'T"-k,s/ep, TI:lk
(z - dv)) tk(ep)

szCep) ~ Sleep)

m-k
(where the leading coefficients of!T.,-k,S,(ep, TIv=l (z - dJ) have to be chosen
suitably).

Proof Since Sn - Rn- m- 1 is a polynomial of degree n which has exactly
2(n - k) simple zeros on [-7T, +7T), Sn ~ Rn- m- 1 can be represented as

where Vn _ k is a trigonometric polynomial of degree n - k which has exactly
2(n - k) simple zeros on [-7T, +7T), and Z/c is a trigonometric polynomial
of degree k which is nonpositive or nonnegative on [-7T, +7T). Therefore

l sinhi

i +Tr /cos jepl
() sgn Vn-k(ep) dep = 0

-7r 51 ep

for j E {O,... , (n - k) - (m - k) - I} (see, e.g., [8, Corollary 1, p. 105]).
Applying Theorem 3 to Vn - k , the theorem is proved.

Concerning the Solotareff problem for weighted trigonometrical approxi­
mation, we need

Notation. Let Sleep) = y2
1 TI~_l (z - (av + ibv))1 2, z = ei<p. For n EN,

n ;): 1+2, A, B, a, T E IR, Rn,S!'A,B(-, a, T) denotes that trigonometric
rational function which deviates least from zero on [-7T, +7T] among all
rational functions of the form

, (I I )
(A cos nep + B sin nep - 2 B V~l bv + A I~ av + a cos(n - 1) ep

The solution of the Solotareff problem follows immediately from
Corollary 1. For, if a 2 + T 2 < A2 + B2, we have

( (
'(Aa + BT) + i(Ba - AT)))/

Rn ,8"A,B(ep, a, T) = .o/;"s/ ep, Z - (A2 + B2) Sleep),
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and (Theorem 2(d))

+- 4'r" R ( ~)' d ' -- -- (A 2 -'-- B2'1,'2 ( I
.1..,,' ""'I,A,S 'P, a, I I 'P - ')12 ) \ 1

For a2 -T- T2 ;;? A2 + B2 one obtains R",S"A,BC a, T) by multipiication Gf

Tn-Ie S/)!Sl by a trigonometric polynomial of degree 1, which is positive
on [-17", --'-17").

Now we consider the representation of the extremal function if, in problem
(b), instead of trigonometric polynomials algebraic polynomials are given.
As mentioned before, this problem can be regarded as a special case of
problem (b).

Notation. Pl(X) = n:~1 (l - x/o:,,) denotes an algebraic polynomial of
degree I which is positive on [-1, +1]. Furthermore, let 0,,(-, PI) =
2n Un(",Pl), where Un(",Pz) is defined in [5, p. 36]. Note that 011(·~ 1) = UTi:
where Un is the Chebyshev polynomial of 2nd type.

DEFINITION 4. Let n~:1 (x - dJ, m EO ~o. be a real polynomial with
dv EO {z EO ell z I < I}, where n~~1 (x - dv) : == 1. Furthermore, ler
n'" ( d )2 ,,2m W d fi f "'; - I Iv=1 X - 0 = .L.I-'~O awYI-'. e ,e ne or 11 EO i'li O ' n,~ - 111,

JlI 0 • 1" (x, fI (x - dJ) :'= 2-" I a"On_2n,_",(X, pd
,>=1 ' /.<-=0

(x EO [-1, -1]).

We obtain from Definition 4 that o/In,»,(-, n::l (x - do)) is a polynomial of
degree II with leading coefficient 1 and ('P = arc cos x, A = 0, B = I)

Now we formulate Theorem 3, which is the basic result of this paper, for
the case of polynomial approximation. Analogously Theorem 2 and
Corollary 1 can be transformed.

THEOREM 4. Let n :): 1+ m, 3m :;( 2n -t- I - 2/. If q" is a polynomial
of degree n with leading coefficient L S-(q,,) = 11 and

r+1 Xk
~() sgn qn(x) dx == 0,

"-1 PI X
k EO {O" .. , 11 - /Jl - I},

then there exists a real polynomial n~'~1 (x - d,,), d" EO {z EO iC II z' < 1;, such
that

q,,(x) = '1/ 1l ,p, (x, IT (x -- do))
\ 1,=1 '

(x EO [-1, -,--1]).
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Proof qn can be represented in the form 2:.7:!:11 ,\(sin i arc cos xl
sin arc cos x), where .\ EIR, An+1 = 1/2n. If we put Sn+1(ep) = 2:.7:!:11 Ai sin iep,
then for k E {I,... , n - m},

Now it follows from Theorem 3, Sn+1 being a sine polynomial, that

d" E {z E ell z I < I},

where the d" are real or complex conjugate. Hence

For pz = 1 Theorem 4 was published by the author in [6]. See also [2, 4].
An application of Theorem 4 gives us the solution of the Solotareff problem
for weighted polynomial approximation.

Notation. Put ex" = Hc" + l/cJ, c" E C, I c" I < 1 for v E {I, ... , I}, and
PI(X) = n:=1 (I - xJcxJ. For n EN, n ~ 1+ 1, a EIR, rn.'Pr, a) denotes
that rational function deviating least from zero on [-1, +1] among all
functions of the form

) ( I ) n-2 I
/xn

- ~l C" + a x
n

-
l + ~o bI1. X I1.\/PI'

with (bo , ... , bn - 2) E IRn-1.

We obtain, from Theorem 4, that

Pl' rn,p,L a) = !J/In,'P,L (x - a»

= (x - a) Un - l (·, PI)

for I a I < 1,

for I a I ~ 1,

and from Theorem 2(d), with y2 = IJn1 (l + c}), that

+1 If I rn,p,(x, a)1 dx = 2-11+1(1 + a2
) TI (l + c,,2)

-1 v=l

I

= 2-n+2 I a I TI (I + c,,2)
,,~l

for I a i < 1.

for I a I ;;:0 1.
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4. FURTHER ApPLICATIONS
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With the aid of the polynomials introduced in Definition 3 we are able
to determine the location of the zeros of the error function for the polynomial
approximation. For results of this type see also [7J.

Notation. For n E No, let P n denote the real polynomials of degree n or
less. Furthermore, let Z(f) = {x E [a, bJIf(x) = O} for f E U[a, b].

Independent of the polynomials introduced above, the following theorem
can be shown.

THEOREM 5. Suppose that f E C[a, b) and that Pn-1 is the best approxima­
tion to f from P n- 1 on [-1, +1). If S-(f - Pn-1) ~ n + 1 and f - Pn-1
has a finite number of distinct zeros in [-1, +1], then f - Pn-1 changes sign
at least once in each interval (-casU - 1)7T/(11 + 1), -cos i7T/(n + 1»,
i = 1,..., n + 1.

Proof According to Rice [8),

,,+1
I xk[sgn U,,(x) - sgn(f - Pn-1)(X») dx = 0,

J --1
k E {O, ... , n - !}.

Assume there exists a j E {I,... , n + I} such that f - Pn-l does not change
sign in the interval (-casU - l)7T/(n + 1), -cosjrr/(n + 1». Then
sgn Un(x) (+) sgn(f - Pn-1)(X) = 0 for x E (-cos(j - 1)7T(n + 1),
-cosj7T/(n + 1», from which we can conclude that sgn Un (+) sgn(f - Pn-1)
has at most (n - 1) changes of sign on (-1, +1). From Lemma 2(a) it
follows now that sgn Un = (:::) sgn(f - Pn-1)' This is in contradiction to
S-(f - Pn-l) ~ n + 1.

LEMMA 3 (Meinardus [5, p. 34)). The zeros (-1 <) x1(d) < x 2(£1) < ... <
xn(d)( <1) of the polynomial 2nciltn .rC·, x - d) = Un - 2dUn _ 1 + d2Un_~

are increasing with respect to dE (-1, -+ 1). Furthermore, x;(O) =

-cos i7T/(n + 1), i = 1,2'00" n.

I 2d ) (1 - d 2
)

~Xi(d) - 1 + d2 T~(xi(d» + n 1 + d 2. Tn(Xi(d» = 0,

where Tn denotes the Chebyshev polynomial of the first kind. If we put
d = (l - (1 - r 2)1/2)/T for TE(-I, +1), T ± 0, it follows from [5, p. 34]
that

dXi 1 - Xi2

(J"; n(l - T 2)1/2 (1 - TXt) -+ (l _ T2) > O.
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THEOREM 6. Let fE C"+1[-l, +1], fln+ll(x) > 0 for x E [-1, +1], let
p" = a"xn + ... be its best approximation from P" and P"-1 =Ie Pn its best
approximation from Pn- 1 with S-(f - Pn-l) = n + 1. If an > 0 «0), then
f - P"-1 changes sign exactly once in each interval (-cos i7T/(n + 2),
-cos i7T/(n + 1»((-cosU - l)7T/(n + 1), -cos i7T/(n + 2»), i = 1,... , n + 1.

Proof Since Pn and Pn-l are best approximations to f, it follows from
[9, p. 120] and [8, p. 105] that

.+1

o < J (Pn-l(X) - Pn(x» sgn(f - P"-I)(X) dx
-1

(

+1
= -an x" sgn(f - Pn-l)(X) dx.

>-1

Using the fact that there exists a d* E (-1, +1)\{0} such· that
sgn(f - Pn-l)(X) = ±sgn Oltn+l.1(x, (x - d*» and, in fact, sgn(f - P"-I)(X) =
sgn 01/nt-l.1(x, (x - d*», since j<n+]) > 0, we get

r
+1

o < - ;: .-1 Un(X) sgn Oltn+l.1(X, (x - d*» dx

= _ ~ [ Z-1 (Z - d*) dz = and*
2"7Ti Jlzl~1 (I - d*z) 2n- 1 •

Hence sgn an = sgn d*. According to Lemma 3 and Theorem 5 the theorem
is proved.

Note that since f<nHJ(x) > 0 for x E [-1, +1], Pn is that polynomial
which interpolates f at the zeros of Un+1 • Therefore the leading coefficient
an of Pn can be determined quite simply. Finally it should be noted that with
the help of the polynomials 011n.p,(·, TI;~1 (x - dv», sufficient conditions can
be stated for the uniqueness of the best weighted (weight 11PI) polynomial
approximation to a piecewise continuous function with jumps. For PI = 1
see [6]..
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