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1. INTRODUCTION

Bernstein (see [1, p. 249-254]) studied the following problem:

(@) Among all rational functions of the form

n

i —1 Wi
x4+ ¥ ax’

, xel[—1, =1], {(a,,....a,4) R,
Pl(x) [ ] { i} » _) -

Fi

where p; is a real fixed polynomial of degree /, n > /, which is positive
in the interval [—1, +1], to find that one whichk has the least deviation
from zerc in the L-norm.

In this paper we consider the following problem, which can be regarded
as a generalization of (a):

(b) Let T,/s; be that function, which has the least deviation from
zero in the L*-norm among all functions of the form

S s (A, cos ip -+ B;sin ip) + Y IF (g, cos ip + b, sin ig)
si(¢) ’

where pe[—m, w] and A, ,..., Ap_p, By ,..., Bu_r € R are given, {gq,.-.,
Goepet s By yoees b)) € R2-2Eand g, is a fixed trigonometric polynomial
of degree I, n = I + k - 1, with real coefficients, which is positive in the
interval [—m, +a). How can the extremal function 7,/s, be represented?

Problem (b) for £ = 0 in the Chebyshev norm was solved by Szegd [10}.

* This paper was supported by the Austrian “Fonds zur Forderung der wissenschaft-
lichen Forschung.”
61
0021-9045/79/090061-15%02.00/C

Copyright © 1979 by Academic Press, Inc.
All rights of repreduction in any form reserved.



62 F. PEHERSTORFER
2. ON THE PROBLEM OF SZEGO IN THE L!-NoOrRM

DermimioN 1 (see [10]). Let s; be a trigonometric polynomial of degree /
with real coefficients which is positive on [—, +7). Then s; can be repre-
sented in the form

s{e) = v* | g2
where yeR*, gi2) = HLl(z-—z,,), z,e{zeC | [z| <1}, z =¢", @€
[—m, +7]. We define for 4, BeR, 42+ B2 >0, neN,,

vET g, 5)) 1= Re (4 — iB) z#~% &E{)_

2.(2) si(®)

for z = &, p e[—m, +m).
If n 21+ 1, then T, (¢, s) is a trigonometric polynomial of degree n
with real coefficients and is of the form A cosng -+ Bsinng 4 -

Notation. In the following let ¥, (z) = z* 2 gi(2)/g(2)) and gf(z) =
gz = HLl (1 — z,2), the reciprocal polynomial of g;(z).

DerFINITION 2. Let a = x, < x; < - <X, = b, reN, be a decom-
position of the interval [a, b]. We say that a function v defined on [a, b]
is a sign function on [a, b}, if cither © or —uv takes the value (—1)/ on the
interval (x;_;, %), J = L..., r.

It is easy to see that the following lemma is valid.

LemMa 1. If v is a sign function on [—m, +7), then, for ke N,,

T e
[ emonlgydp = [ eteuly) de.

The following theorem now gives us the solution of the problem of Szegd
in the L'-norm. Concerning the methods used in the proof of Theorem I,
we refer to [1, p. 252] and [3].

TaeoreM 1. Letn =1+ 1.

sin kq)%
+7 {cos kg . _
(a) { OR sgn T(p, s,)dp =0, ke{0,.,n— I}

v

) If S.(¢) = A cos np + Bsinng + Yo (a; cos ip + b; sin ig),
S, %= T,(, ) is a trigonometric polynomial, then

+7 lSn((P)l t ] T’ﬂ((P’ Sl)| _ 4 2 2\l /2
[ Sigde > 5 de = a4 By
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Proof. (2) Sincel = n(-) V(2)=|¥ (2)32forz =e*, ¢ge{—m, +
there exists a real function ¢ such that '@ =¥ (2} (z = &, p € [—w, 7).
Therefore

2 Tal®, 57

¥ —%; — Re{(4 — iB) 4%} = (A2 -~ B cos(Pe) + ¥ (1)

where ¢ = (4 + iB)/(4% + B¥)'~.
Considering the expansion

A
w

sgn cos(gp + o) =

where (z = ¢°, p e [—m, +7])

cos(2r + () + o) = Re{[el¥ (o)1, &
we have
-l E'_”‘ , © - i),
[ ey sem cosblp) + @) dop =5 ¥ 5 f
r=4 -

with (= ) I, = [77 (7/2i(2) &) Re{leP (I} dop.
An elementary calculation gives

1 +m -
g =5 ——— [V (2)]r+ do
2 - ol(‘)cl(z)
1 +7 Zl
+ el [e——ml}'I (Z}]2r+1 d(},,
2 L g?) &(2)
_ enrhe ’ =k (D)2 41) s [_’IZ
7 a (e @ 7z
+ e iR ( J S R OIS PR (AP ii’l( )P ':'iz
2 o gi@p2iz-
Since |z,0 < 1forv =1,..,land —k — 1 +{+ (n— D(Zr > 0 for

ke{0,.,n— 1}, reN,, both integrands are analytic in th° umt disk,
By Cauchy’s theorem,

I,=0 for ke{0,.,n— 1}, reN;.

Part (a) of Theorem 1 follows now from Lemma 1.
Concerning (b), it follows from (a) and Lemma 4.-4 of [8, p. 1037 that

b40/27]1-5
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T, s1)/si(p) is the unique extremal function. From the proof of (a) we
obtain with the aid of (1)

I

Using the formula

Tl 81 (A2 B i |
BTG A f_ﬂ | cos(d(g) + )| dp.  (3)

(=1

| cos($(g) + )| = G 008 21($(g) + o)

2
T

s

_ 4
T

I
-

r:

and, as is easy to see by (2),

[ 7 cos 21(d(g) + ) dp =0 for reN,

—7

we have

[ cos(te) + @)l dgp = > [ dgp = 4.

The result now follows from (3).

3. REPRESENTATION OF THE EXTREMAL FUNCTION OF PROBLEM (b)

DrerintrioN 3. Assume 2, [, me N, , and let

m 2m 2m—1
[[—dyr=73 az+i Y bz
y=1 u=0 u=0

where d,e{zeC||z| <1}, a,,b,eR Let [T,_; (z — 4,)* = 1 for m = 0.
We define forn =/ 4+ m + 1
m 2m 2m~1
g—n,sl (SD’H (Z - dv)) L= z auT1L—2m+u((P9 Sl) + Z buT;~2nz+u(905 Sl)a
\ u=0

p=1 / u=0

where
Y'Tilg, 5) i= Re (B + id) 2+ 18] g
g(2)
for z = e, g e [—m, +7]

Notation. For a,beR, f:[a,b] - R we denote the number of sign
changes of f on (a, b) by S=(f).
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THEOREM 2. (a8) [, [T (z — d)) is a trigonometric polynontial of
degree n swith real coefficients of the form A cosng + Bsinng + -,

gsm fap;
= leos kgy - no .
(b) }*’r 53((‘[') - Sal’l e/n 33 ((Fa };[1_ (A— dl) do — U

© S ( ( H (- — d,,))) > — 1,

@) If3m <2n—2 — 1, then with [, (z — d,) = Y 2" one has

fwﬂﬁ%mﬂc d,))
L. (g

Proof. Let h,(2) =[], (z — d). Concerning par: (a), one has, for
z =¢é gei—m +m7,

T, (qc f[ (z — a’v))

= Re{(A - IB) 7mhm (-‘)\ S’((p)

e I -n—21—2m g[(Z) hm(“) l 2 {1
= Re %(A lB) . ol(z) h (75 {9) m\-)\ t1;

Hence

m
'yzgrn,sz ((Py H (z — dl)) == Tn((“.ﬁ, 5y | I, % {’2\
v=1

(b} From (2) and Theorem 1(a), it follows that

{sin k(pz
P {cos k) ( n Vo
I R TR 12 LI 8 z —d))de =
L 5@ Thaey® &8 w¢5” fo

Pt
[¥%)

for ke{0,...,n — 1}. Noting that | £,(¢'®)|? is a trigonometric polynomial
of degree m, Theorem 1(b) is proved.

(¢} The assertion follows from (3) and Lemma 4.-6 of [8, p. 108].

(d) As in the proof of Theorem 1, one demonsirates the existence
of a real function ¢ such that

(A4* +— B2 cos(d(p) + o) = Re \(A — iB) g o 5D '—zﬂ(i‘
l() Tm(
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where e = (4 + iB){(A? + B#)'/2. Therefore with (1),

| Tl 12 C — )
J;ﬂ si(p) ) a5
— IR L cosbl) + ol [ hule)2 d )

Since 3m < 2n — 2/ — 1, it follows, by Cauchy’s theorem, that

[ e cos 2e(6(e) + o) dy
— ( Z—EkH{n—1-m)2r [ gl(z) hM(Z) ]27 dz

iz

Jizlz & (@) hi(2)
L Sl (n—l—m)2r [ gl(z) l—ﬁn(z) ]2r"1_z =0
lzl=1 g2y hi(z) 1 iz

for k €{0,..., m}, r € N. Analogously one shows that

[ etto cos 2($() + ) dgp =0 for ke{O..,m), reN. ()

v —r

With the help of the Fourier expansion of | cos(¢ - «)| and (5), we obtain

47 . 2 pim .
[ 1 cos(@le) + ol | an(e ) dp = = [ | he)]2 de.
In view of Parseval’s formula and (4), Theorem 2(d) is proved.

Now the question arises whether every trigonometric polynomial of
degree n with property (b) of Theorem 2 is a polynomial of the form
T, (P T1. (z — d,)). It will be shown that this is valid under appropriate
conditions.

The following lemma is known (see, e.g., [7]); A denotes the Lebesgue
measure.

LemMA 2. {a) Let v be a bounded function on [—m=, +=] with at most
a finite number of discontinuities. If S=(v) < 2n — 2 and

gsin ko)
cos k(ps

j[—mﬂ] Csle) o(p) dp) =0, kef0,..,n—1}

then v = 0 A a.e. on [—m, +m].
(b) Ifv, ware sign functions on [—m, +7] withS—~(v) = kand S—(w) =1,
k,leN,, then S—(v 4+ w) < min{/, k}.
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TueoreMm 3. Letn =1+ m—+ 1,3m < 2n — 2 — 1. If §,, is a trigonom-
etric polynomial of degree n with leading coefficients 4, Be R, A2 - B* > (,
S(S,) =2n—1, and

{sin k)
;77 {cos kol \
———T=sgn S,(¢) dp = 0, ke{0,..,n —m— 1},
L "5 () dp = 0, {
then there exists a polynomial 1,y (z — d,), d,e{zeC | | 2| < 1}, such that

S(g) = “,(rp,n(z—m) (¢ & [, +m)).

If in addition J'lL: cos(n — myp sgn S,(p) dg + 0 or j: sin(n — m)e sgn
Sp)dp =0, thend,e{zcC { 0 <lz| < forve{l,., m

Proof. Put

AT e—zl A

1
ht - S =
4_ J_" gl(ew) gl(ew) gn n((P) a‘P alc s {”

with a, € C for k € {n — m,..., n}. Furthermore, let

(g7 @)T Z Byonyn?® = Y, Bz + )
=4
In view of {I, p. 274-275], for the m - 1 given numbers by,..., b, C
there exists an analytic rational function in the unit disk such that

! 1
Co 1 €32 + T CpaZ Z b p Z s

Egzml + (_leml_l 4 e + Eml

w=rir+x

for ze{zeC||z| <1}, where LeR", meN and my <m, ¢, 0,
yu.€Cfor we{m+ 1, m+ 2,..}. From the equation

my .
L S _}" + CrmiZ " = et HV:l (Z — a")
Goz™ &+ Cpy T, (1 = d.2)
v=

with d,e{zeC||z| < I} for v = 1,.., m, y €R, it follows from (2) that

Le"z) = Y Gpmpuz* + Y. viz 3

=0 w==att-1

forze{zeC||z| <1}, y,eC, peim + 1,...}, where

iy, } my
b)) =Tl e —d)  and Q@) =iy (1)}2(2,3* o
pa=1 [ \= 4 myNTs

640[27/1-6
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Therefore

Letr
2

f ' Z_(k+1)+(n—m)Q(Z) dz =0 for 0k
lzl=1

<
= a, for n—m <k <n

We consider now the trigonometric polynomial of degree n — m - m,

G(¢) := Re ( iy n=2l—m—my gf’zi;) hmlEZ;) | gz )hml(z)lz

for z = e, pe[—m, +7].
As in the proof of Theorem 1(a) one shows that

T < (-1 o
f_,, eV Gle) dp = 20 Tl @=e9,

where

I, = f+ﬂ z*F Re g[eiyzvn—zl—-m—ml gl(z) hml(z)'] r+l d
- gz) gi(2) gUz) hu(2)

We obtain forr = 0

Z1l—m—kQ(Z) %; 4+ e—tv f Z-n+k-m§(z) %Z

lzl=1

Iy, = e” f
izl=1
et
= — f Z—-(k+l)+(11—m)Q(Z) dz.
L Jzl=1

By Cauchy’s theorem and the fact that 3m << 2n — 2/ — 1,
I, =0 for ke{0,.,n}, reN.

Hence by (4)

1' J+” zk sgn G(g) dp — __1_J' Z- D= Q(7) 7
el gy2) gl(z) 2l g

©)

=0 for 0Lk s<n—m—1,

a,
:Le,;" for n—m<k<n
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From (1) and Lemma 1 it follows now that

{sin k)
f+” écos kol

———= (L sgn G(p) — sgn S, dop =0, k €10,..., nh.
- Sl((P) ( gn ({P) o ((P)) ?’ t

Since

sgn(L sgn G(gp) — sgn S,(g)) = sgn G(g) for L > 1,
= —sgn S,(9) for L <1,

Lemma 2 implies L = 1. Furthermore, Lemma 2(b) and 2(a) give

sgn G(g) = sgn Su(e)  (pe[—m 7). (6}

Since S, has at least 27 — 1 zeros on (—, -+ ), G must be a polynomial of
degree n; hence m; = m.
I $(S,) == 2n, it follows immediately from (6) that

KG = §,, where Ke R\{C}

Since a trigonometric polynomial of degree n cannot have (2n — 1) simple
real zeros on [{—m, +), it follows from (6) that for $=(5,) = 2n — i,

G(—7m) =8(—7m) =0 and thus KG = 5, , where K e R\{C}.

In view of (5) the theorem is proved. If a,_, = 0, it follows from (3}, by
putting z = 0, that d,e{ze C |0 < | z| < 1}, ve{l,.., m}

Notation. let P,, neN,, denote the real trigonometric polynomials of
degree equal or less than n. If R, € P, is such that

1 f(@) — Ru()l - flp) — Skedi o,
d)\ ) = nf N fl\ >}
J[—ﬂ,’}n’f] Sl((p) (gﬁ) Sieﬁn Yz, 4-7] SZ{Q’) ‘ ‘\(r)

we call R, a best approximation to f& LY—m, =] from P, with respect to
the weight function 1/s; .

Theorem 2 enables us to give a general representation of the error function
when approximating a fixed trigonometric polynomial by trigonometric
polynomials of lower degree.

CoroLLARY 1. Supposen,m,le Ny, n=2m+ [+ 1,3m <2n— 2/ — 1.
Let S, be a trigonometric polynomial of degree n and R, _,,_. be the besi



70 F. PEHERSTORFER

approximation to S, from P,_,_, with respect to the weight function 1]s; .
If Sy — Ry iy has 2(n — k), ke{0,...,m}, simple zeros on [—m, +),
then there exists a polynomial T,y (z — d,), d,e{zeC||z| <1}, and a
trigonometric polynomial t,, € P, | which is nonnegative on [—w, 4-7), such that

Sn((p) — Rn—m-l(‘P) —_ ﬂl—kvsz((P’ :1;76 (Z - dv)) tk(‘P)
() - si()

(where the leading coefficients of 7,y s (9 I—[,f':lk (z — d,)) have to be chosen
suitably).

Proof. Since S, — R,_,,_, is a polynomial of degree #» which has exactly
2(n — k) simple zeros on [—m, +m), S, — R,_,,_; can be represented as

Sn - Rn—m—l = n-ka »

where V,_; is a trigonometric polynomial of degree n — k which has exactly
2(n — k) simple zeros on [—, -+7), and Z,, is a trigonometric polynomial
of degree k& which is nonpositive or nonnegative on [—a, 4). Therefore

%Sinj(p

7 {cos jo)

BIP son V, (@) dp =0
f_ﬁ Sz(‘P) g L(QD) @

for je{0,..,(n — k) — (m — k) — 1} (see, e.g., [8, Corollary 1, p. 105]).
Applying Theorem 3 to V,_;, the theorem is proved.

Concerning the Solotareff problem for weighted trigonometrical approxi-
mation, we need

Notation. Let si(¢) = 32 |[T._1(z — (@, + b))%, z = e®. For neN,
n=l+2 A,B o, 7eR, Rys 458(5 0 7} denotes that trigonometric
rational function which deviates least from zero on [—, +7] among all
rational functions of the form

) 1 1
(Acoan: +—Bsin11<p—2(BZb,,+A Za,,—}—o)cos(n— Do

p=1 v=1

—2 (B i a, — A i b, + 7) sin(n — 1) ¢ + "')/sl((p).

v=1 v=1

The solution of the Solotareff problem follows immediately from
Corollary 1. For, if o + 72 << A*> + BZ we have

ot 0. = 2~ (U= 1)1
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and (Theorem 2(d))

o : 2 27
{,,, Ry cpas(e, 0, ) de = ')—i; (42 ~ B2 (\l L _Z_/‘{;__t_;_;{)

For o -+ 7* = A* 4 B* one obtains R, 4 5(", 0, 7) by multiplication of
Tpoa(, 51}/, by a trigonometric polynomial of degree 1, which is positive
on [—ar, +m).

Now we consider the representation of the extremal function if, in problem
{b), instead of trigonometric polynomials algebraic polynomials are given.
As mentioned before, this problem can be regarded as a special case of
problem (b}

Notation. pyx) = 1—[,1:1(1 — x/a,) denotes an algebraic polynomial of
degree / which is positive on [—1, +1]. Furthermore, let U,(, p)) =
22U ,(-, p1), where U,(-, p) is defined in [5, p. 36]. Note that U,(-, 1) = ¥, ,
where U, is the Chebyshev polynomial of 2nd type.

Derinition 4. Let T, (x — d), meN,. be a real polynomial with
d,c{zelC ] lz) <1}, where H(:=1 (x —d):= 1. Furthermore, let
1'[:";1 (x —d)y = Zimo a,x*. We define for neN,, n =1 m,

21

In‘ H (‘K — d)) = 2R y auUn 29— L(\ pl) {\ = E'__ _1])

We obtain from Definition 4 that %, ,, (-, [T, (x — d))is a polynomial of
degree n with leading coefficient 1 and (q) arccosx, A =0, B =1}

’ o g—” 4 @i\ =1 1% — 4
»u,, ( ] - d)) tonteose(, T1 D

el sin @

Now we formulate Theorem 3, which is the basic result of this paper, for
the case of polynomial approximation. Analogously Theorem 2 and
Corollary 1 can be transformed.

THEOREM 4. Let n = 1-+m, 3m < 2n + 1 — 2L If g, is a polynomial
of degree n with leading coefficient 1. S~(q,) = n and

+1 gk
sgn gn{x) dx = 0, kef0,...,n—m— 1}
(—1 p ( ) g qn( } s 5
then there exists a real polynomial T1," 1 (x — d.), d,€{zeC l |z << 1}, such
that

[a—
—

) = T (5[] G d)) et =1
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Proof. g, can be represented in the form Zf:ll Asin i arc cos x/
sin arc cos x), where A; € R, A,y = 1/27. If we put S, ;(¢) = ST sin ip,
then for k e{l,...,n — m},

sin kg

o 1 Upafx)
0= f —— m sgn Sn_,_]_((p) d(p

| oy 9 b= |

Now it follows from Theorem 3, S, ,; being a sine polynomial, that

;

28, (9) = Tusnonomo (9 11 @ - d,)), defzeCl(z] <1},

v=1

where the d, are real or complex conjugate. Hence

Snia(e) . y;H-L1::,(0os:»)(‘;0; IT% (2 — 4)
singp 27 sin @

= J?/n,pl (x5 H (x - dv))-
y=1

For p, = 1 Theorem 4 was published by the author in [6]. See also [2, 4)].
An application of Theorem 4 gives us the solution of the Solotareff problem
for weighted polynomial approximation.

galx) =

Notation. Put o, = ¥c, + l/¢), ¢, €C, |¢,| <1 for ve{l,..., I}, and
pix) =TT, (0 — xja). For neN, n =1+ 1, ceR, Tn,p ("> 0) denotes
that rational function deviating least from zero on [—1, 4+1] among all
functions of the form

/pl [}

4 n—2
%x‘" — (Z c, -+ 0') xm L Y bxt
y=1

u==0

with (bg ,..., by_p) € R®1,
We obtain, from Theorem 4, that

Pi Fup 5 0) = Unp (5 (x — 0)) for o] <1,
=& —=0) Upu(,p)  for o] =1,

and from Theorem 2(d), with 3% = 1 /Hi (1 + ¢,?), that

1 1
[t o de =290 + ) [TA + 6)  for ol <.
1

— v=1

1
=22 o] + ¢ for o] = 1.

v=1
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4. FURTHER ATPLICATIONS

With the aid of the polynomials introduced in Definition 3 we are able
to determine the location of the zeros of the error function for the polynomial
approximation. For results of this type see also [7].

Notation. For ne Ny, let P, denote the real polynomials of degree #n or
less. Furthermore, let Z(f) = {x € [a, b] | f(x) = 0} for fe L'a, b].

Independent of the polynomials introduced above, the following theorem
can be shown.

THEOREM 5. Suppose that f € Cla, b] and that p,_; is the best approxima-
tion to f from P,_; on [—1,+1]. If S(f—pa) =0+ 1 and f—p,
has a finite number of distinct zeros in [—1, +1], then f — p,_, changes sign
at least once in each interval (—cos(i — Dyw/{n + 1), —cos inf(n -+ 1)),
i=1,..n+ L

Proof. According to Rice [8],

a1
| i “Hsgn Un(x) — sgn(f — pa)®]dx =0, kel0,.,n— i
Assume there exists a je{l,...,n 4 I} such that /' — p,_, does not change
sign in the interval (—cos(j— D#/(n + 1), —cos jn/(n 4+ 1)). Then
sgn Un(x) ) sgn(f — pua)(x) = 0 for x € (—cos(j — Dm/(n + 1),
—cos jm/(n + 1)), from which we can conclude that sgn U,, () sgn(f — £}
has at most (n — 1) changes of sign on (—1, +1). From Lemma 2(a} it
follows now that sgn U, = &) sgn(f — p,_,). This is in contradiction to
Sf—puy) =n+ 1

Lemma 3 (Meinardus [5, p. 34]).  The zeros (—1<C) x{d) < xo{d) < -+ <
x (A<} of the polynomial 2"%, (,x —d) = U, — 2dU,_; + d2U,_,
are increasing with respect to de(—1, +1). Furthermore, x{0) =
—cosimf(n+ 1), i=1,2,..,n

Proof.  Since Un(x{d)) — 2dU,_1(x{d)) + d*U,_3(x{d)) = 0

(xid) = 243) To(xd@) + m (55 Tulot) =,

where 7, denotes the Chebyshev polynomial of the first kind. If we pui
d={1—(0 — /s for re(—1, +1), 7 =£ 0, it follows from [3, p. 34]
that

dx;, 1 — x?

2 R T Ry gy i S
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THEOREM 6. Let fe CtH[—1, +1], f"(x) > 0 for xe[—1, +1], let
Do == ayx™ - -+ be its best approximation from P, and p,_ ¥ p, its best
approximation from P,_, with S~(f — p,_;) = n -+ 1. If a, > 0 (<0), then
f—pn_y changes sign exactly once in each interval (—cos in{(n + 2),
—cos imf(n + 1)({(—cos(i — Daf(n + 1), —cos imf(n + 2)),i =1,...,n+ 1.

Proof. Since p, and p,_, are best approximations to f, it follows from
[9, p. 120] and [8, p. 105] that

2+l
0 < j_l (Pnalx) — pu(x)) sgn(f — pp_y)(x) dx
+1
= —a, [ " sgn(f — pu o)) dx.
Using the fact that there exists a d*e(—1, +1)\{0} such ' that
sgn(f — pna)(x) = 8gn Uy 4(x, (x — d*)) and, in fact, sgn(f — pa—)(x) =
Sgn U, 1 1(x, (x — d*)), since f"+1) > 0, we get
aﬂ

+1
0 < — Fn [ Un(x) sgn %p,pal, (x — d¥) dx
v

o L e—dY) . ad*
= 2% flz,zl = A Tk

Hence sgn a,, = sgn d*. According to Lemma 3 and Theorem 5 the theorem
is proved.

Note that since f®+Y(x) > 0 for xe[—1, +1], p, is that polynomial
which interpolates f at the zeros of U,,, . Therefore the leading coefficient
a, of p, can be determined quite simply. Finally it should be noted that with
the help of the polynomials %, , (-, T, (x — d))), sufficient conditions can
be stated for the uniqueness of the best weighted (weight 1/p;) polynomial
approximation to a piecewise continuous function with jumps. For p; = 1
see [6].-
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